Both SF-6D and EQ-5D utility scores were lower among migraine respondents of the NHWS in the SEU.

The purpose of this study was to describe the incremental burden of migraine on health-related quality of life (HRQoL) in those suffering from migraine of ≥ 4 monthly headache days (MHDs) compared with matched controls in Europe (EU5: France, Germany, Italy, Spain, and UK).

The study included 1569 adult respondents who self-reported a doctor diagnosis of migraine, experienced at least one migraine in the prior month, and experienced ≥ 4 MHDs during the prior month. Respondents were stratified by MHD frequency (i.e., 4–7, 8–14 [Episodic migraine] and ≥ 15 MHDs [Chronic migraine]) and using a 1:1 matching algorithm to 1560 respondents without migraine (controls) using sociodemographic characteristics (Table 1). Respondents were matched within each MHD frequency subgroup and country.

Propensity matching was conducted using demographic variables identified in pre-treatment bivariate analysis. Subscripts refer to pairwise comparisons using independent samples t-tests between subgroups. Values that do not share the same subscript are significantly different at p < 0.05. EM = episodic migraine; CM = chronic migraine.

Conclusions

The mean minimally important difference (MID) for EQ-5D has been reported to be 0.1 to 0.2 points for PCS and 0.4 points for MCS.

The mean minimally important difference (MID) for EQ-5D has been scored between 0 (zero) to 100; Higher scores indicate better quality of life. The Mental Component Summary (MCS) and Physical Component Summary (PCS) scores of the SF-12 were significantly lower across migraine subgroups compared with matched controls.

The EQ-5D index score has a theoretical range from 0 to 1, with 1 representing full health; negative scores are possible for health states worse than death.

Both Mental (MCS) and Physical Component Summary (PCS) scores of the SF-12 were significantly lower across migraine subgroups compared with matched controls.

The purpose of this study was to describe the incremental burden of migraine on health-related quality of life (HRQoL) in those suffering from migraine of ≥ 4 monthly headache days (MHDs) compared with matched controls in Europe (EU5: France, Germany, Italy, Spain, and UK).

The study included 1569 adult respondents who self-reported a doctor diagnosis of migraine, experienced at least one migraine in the prior month, and experienced ≥ 4 MHDs during the prior month. Respondents were stratified by MHD frequency (i.e., 4–7, 8–14 [Episodic migraine] and ≥ 15 MHDs [Chronic migraine]) and using a 1:1 matching algorithm to 1560 respondents without migraine (controls) using sociodemographic characteristics (Table 1). Respondents were matched within each MHD frequency subgroup and country.

Propensity matching was conducted using demographic variables identified in pre-treatment bivariate analysis. Subscripts refer to pairwise comparisons using independent samples t-tests between subgroups. Values that do not share the same subscript are significantly different at p < 0.05. EM = episodic migraine; CM = chronic migraine.

Conclusions

The mean minimally important difference (MID) for EQ-5D has been reported to be 0.1 to 0.2 points for PCS and 0.4 points for MCS.

The mean minimally important difference (MID) for EQ-5D has been scored between 0 (zero) to 100; Higher scores indicate better quality of life. The Mental Component Summary (MCS) and Physical Component Summary (PCS) scores of the SF-12 were significantly lower across migraine subgroups compared with matched controls.

The EQ-5D index score has a theoretical range from 0 to 1, with 1 representing full health; negative scores are possible for health states worse than death.

Both Mental (MCS) and Physical Component Summary (PCS) scores of the SF-12 were significantly lower across migraine subgroups compared with matched controls.

The purpose of this study was to describe the incremental burden of migraine on health-related quality of life (HRQoL) in those suffering from migraine of ≥ 4 monthly headache days (MHDs) compared with matched controls in Europe (EU5: France, Germany, Italy, Spain, and UK).

The study included 1569 adult respondents who self-reported a doctor diagnosis of migraine, experienced at least one migraine in the prior month, and experienced ≥ 4 MHDs during the prior month. Respondents were stratified by MHD frequency (i.e., 4–7, 8–14 [Episodic migraine] and ≥ 15 MHDs [Chronic migraine]) and using a 1:1 matching algorithm to 1560 respondents without migraine (controls) using sociodemographic characteristics (Table 1). Respondents were matched within each MHD frequency subgroup and country.

Propensity matching was conducted using demographic variables identified in pre-treatment bivariate analysis. Subscripts refer to pairwise comparisons using independent samples t-tests between subgroups. Values that do not share the same subscript are significantly different at p < 0.05. EM = episodic migraine; CM = chronic migraine.

Conclusions

The mean minimally important difference (MID) for EQ-5D has been reported to be 0.1 to 0.2 points for PCS and 0.4 points for MCS.

The mean minimally important difference (MID) for EQ-5D has been scored between 0 (zero) to 100; Higher scores indicate better quality of life. The Mental Component Summary (MCS) and Physical Component Summary (PCS) scores of the SF-12 were significantly lower across migraine subgroups compared with matched controls.

The EQ-5D index score has a theoretical range from 0 to 1, with 1 representing full health; negative scores are possible for health states worse than death.

Both Mental (MCS) and Physical Component Summary (PCS) scores of the SF-12 were significantly lower across migraine subgroups compared with matched controls.

The purpose of this study was to describe the incremental burden of migraine on health-related quality of life (HRQoL) in those suffering from migraine of ≥ 4 monthly headache days (MHDs) compared with matched controls in Europe (EU5: France, Germany, Italy, Spain, and UK).

The study included 1569 adult respondents who self-reported a doctor diagnosis of migraine, experienced at least one migraine in the prior month, and experienced ≥ 4 MHDs during the prior month. Respondents were stratified by MHD frequency (i.e., 4–7, 8–14 [Episodic migraine] and ≥ 15 MHDs [Chronic migraine]) and using a 1:1 matching algorithm to 1560 respondents without migraine (controls) using sociodemographic characteristics (Table 1). Respondents were matched within each MHD frequency subgroup and country.

Propensity matching was conducted using demographic variables identified in pre-treatment bivariate analysis. Subscripts refer to pairwise comparisons using independent samples t-tests between subgroups. Values that do not share the same subscript are significantly different at p < 0.05. EM = episodic migraine; CM = chronic migraine.

Conclusions

The mean minimally important difference (MID) for EQ-5D has been reported to be 0.1 to 0.2 points for PCS and 0.4 points for MCS.

The mean minimally important difference (MID) for EQ-5D has been scored between 0 (zero) to 100; Higher scores indicate better quality of life. The Mental Component Summary (MCS) and Physical Component Summary (PCS) scores of the SF-12 were significantly lower across migraine subgroups compared with matched controls.

The EQ-5D index score has a theoretical range from 0 to 1, with 1 representing full health; negative scores are possible for health states worse than death.

Both Mental (MCS) and Physical Component Summary (PCS) scores of the SF-12 were significantly lower across migraine subgroups compared with matched controls.

The purpose of this study was to describe the incremental burden of migraine on health-related quality of life (HRQoL) in those suffering from migraine of ≥ 4 monthly headache days (MHDs) compared with matched controls in Europe (EU5: France, Germany, Italy, Spain, and UK).

The study included 1569 adult respondents who self-reported a doctor diagnosis of migraine, experienced at least one migraine in the prior month, and experienced ≥ 4 MHDs during the prior month. Respondents were stratified by MHD frequency (i.e., 4–7, 8–14 [Episodic migraine] and ≥ 15 MHDs [Chronic migraine]) and using a 1:1 matching algorithm to 1560 respondents without migraine (controls) using sociodemographic characteristics (Table 1). Respondents were matched within each MHD frequency subgroup and country.

Propensity matching was conducted using demographic variables identified in pre-treatment bivariate analysis. Subscripts refer to pairwise comparisons using independent samples t-tests between subgroups. Values that do not share the same subscript are significantly different at p < 0.05. EM = episodic migraine; CM = chronic migraine.

Conclusions

The mean minimally important difference (MID) for EQ-5D has been reported to be 0.1 to 0.2 points for PCS and 0.4 points for MCS.